Formelsamling B Niveau
Maj 2017
Dette er en koncentreret formelsamling baseret på indholdet fra Webmatematik For
mere uddybende forklaringer gå ind på Webmatematik.dk
Webmatematik - Formelsamling B-niveau

Matematikcenter

Maj 2017

Indhold

1. **Andengradspolynomium og -ligning**
 1.1 Diskriminantformlen ... 4
 1.2 Kvadratkomplettering ... 4
 1.3 Faktoriserings og nulreglen ... 6
 1.3.1 Faktoriserings af andengradspolynomier 6
 1.3.2 Gæt løsningerne til en andengrads ligning 6
 1.3.3 Gæt løsningerne, hvis a ikke er 1 7
 1.4 Toppunktsformlen .. 8
 1.5 Sammenhæng mellem forskrift og graf 9
 1.5.1 Betydningen af a .. 9
 1.5.2 Betydningen af b .. 10
 1.5.3 Betydningen af c .. 10
 1.5.4 Betydningen af d .. 10

2. **Trigonometri**
 2.1 Grundlæggende ... 12
 2.2 Cosinusrelationerne ... 12
 2.2.1 Hvis man vil finde en side ... 12
 2.2.2 Hvis man vil finde en vinkel 12
 2.3 Sinusrelationerne .. 13
 2.3.1 Hvis vi vil finde en side .. 13
 2.3.2 Hvis vi skal finde en vinkel 14
 2.4 Sinusrelationerne i stumpvinklede trekanter 14
 2.5 Arealformlen .. 15
 2.6 Grundrelationen .. 16

3. **Funktioner**
 3.1 Definitions- og værdimængde .. 16
 3.1.1 Definitions mængde .. 16
 3.1.2 Værdimængde ... 17
 3.2 Sammengsatte funktioner ... 17
 3.2.1 Bolle-notationen .. 18
 3.3 Omvendte funktioner ... 19
 3.3.1 Identitetsfunktionen .. 19
 3.3.2 Omvendte funktioner .. 19
4 Geometri

4.1 Afstandsformlen .. 20
4.2 Distanceformlen .. 20
4.3 Ortolonale linjer .. 21
4.4 Cirkens ligning ... 22
4.5 Omformning af cirkens ligning 22
4.6 Cirkler og linjers skæring 24
 4.6.1 Bestemme koordinaterne for skæringspunkter 25

5 Differentialregning

5.1 Afledede funktioner ... 27
5.2 Regneregler for differentialkvotienter 27
 5.2.1 Sumreglen .. 27
 5.2.2 Konstantreglen .. 28
 5.2.3 Produktreglen ... 28
 5.2.4 Kvotientreglen .. 28
5.3 Tangentens ligning ... 28
5.4 Monotoniforhold .. 29
 5.4.1 Maksimum, minimum og vendetangent 29
 5.4.2 Monotonilinje ... 29
 5.4.3 Opsumming .. 31
5.5 Optimering ... 31
 5.5.1 Opskrift ... 31

6 Integralregning

6.1 Stamfunktion .. 31
 6.1.1 Integrationsprøven ... 32
6.2 Ubestemt integral .. 32
 6.2.1 Ubestemt integral .. 32
 6.2.2 Bestem stamfunktion gennem et punkt 33
6.3 Integrerede funktioner ... 34
6.4 Regneregler for integraler 35
 6.4.1 Sumreglen .. 35
 6.4.2 Differensreglen .. 35
 6.4.3 Produkt af konstant og funktion 36
6.5 Bestemt integral og areal 36
 6.5.1 Areal .. 36
 6.6 Areal mellem to funktioner 37

7 Sandsynlighed og kombinatorik

7.1 Grundlæggende begreber ... 38
 7.1.1 Udfaldsrum ... 38
 7.1.2 Sandsynlighed ... 38
 7.1.3 Hændelse ... 39
 7.1.4 Komplementær hændelse 39
7.2 Fakultetsfunktionen ... 40
7.3 Multiplikations- og additionsprincipperne 41
 7.3.1 Multiplikationsprincipippet 41
 7.3.2 Additionsprincipippet 42
7.4 Kombinatorik .. 42
7.4.1 Hvis rækkefølgen betyder noget .. 42
7.5 Kombinatorik og sandsynlighed ... 43
 7.5.1 Eksempel .. 43
7.6 Stokastisk variabel .. 43
 7.6.1 Diskret vs. kontinueret ... 44
7.7 Binomialfordelingen ... 44
 7.7.1 Binomialfordelingen ... 45

8 Statistik ... 45
 8.1 Grundlæggende begreber ... 45
 8.1.1 Stikprøve og population ... 45
 8.1.2 Observation, hyppighed, frekvens og kumuleret frekvens 46
 8.2 Summationstegn ... 46
 8.3 Ugrupperede vs. Grupperede ... 47
 8.3.1 Stolpediagrammer og histogrammer 47
 8.4 Middelværdi, Varians og Spredning .. 48
 8.4.1 Middelværdi for grupperede observationer 49
 8.4.2 Varians og spredning .. 50
 8.5 Sumkurver, kvartilsæt og boksplots .. 50
 8.5.1 Ugrupperede vs. grupperede .. 51
 8.5.2 Kvartilsæt .. 51
 8.5.3 Boksplot ... 53
 8.6 Fordelingsfunktion og frekvensfunktion 54
 8.6.1 Fordelingsfunktion .. 54
 8.6.2 Sammenhæng mellem frekvensfunktion og fordelingsfunktion 54
 8.7 Normalfordeling .. 55
 8.7.1 Tjek om data er normalfordelt 56
 8.7.2 Hvad er der særligt ved normalfordelingen? 56
 8.8 CHI-test .. 57
 8.8.1 Forventede værdier .. 57
 8.8.2 Nulhypotese .. 58
 8.8.3 Valg af signifikansniveau .. 58
 8.8.4 Frihedsgrader .. 58
 8.8.5 Udregne chi-teststørrelsen .. 58
 8.8.6 Konklusion på test ... 59
1 Andengradspolynomium og -ligning

1.1 Diskriminantformlen

En andengradsligning er en ligning på formen

\[ax^2 + bx + c = 0, \quad a \neq 0 \]

Grunden til, at \(a \) ikke må være 0, er, at så ville andengradsleddet forsvinde, og vi ville stå tilbage med en førstegradsligning.

Metoden til at løse andengradsligningen kaldes diskriminantmetoden. Den er inddelt i to skridt.

Først finder man diskriminanten, \(d \), som er givet ved formlen

\[d = b^2 - 4 \cdot a \cdot c \]

Når man har fundet diskriminanten, er der tre muligheder:

Hvis \(d \) er negativ (\(d < 0 \)), så har ligningen ingen løsninger

Hvis \(d = 0 \), så har ligningen 1 løsning

Hvis \(d \) er positiv (\(d > 0 \)), så har ligningen 2 løsninger

I de tilfælde, hvor der eksisterer løsninger, finder man dem ved formlen

\[x = \frac{-b \pm \sqrt{d}}{2 \cdot a} \]

Tegnet \(\pm \) læses som ”plus-minus” og det betyder, at ved den ene løsning skal vi indsætte plus, og ved den anden skal vi indsætte minus.

\[x_1 = \frac{-b + \sqrt{d}}{2 \cdot a} \quad x_2 = \frac{-b - \sqrt{d}}{2 \cdot a} \]

1.2 Kvadratkomplettering

Hvis man ikke er så god til at huske formler, så findes der også en anden metode til at løse andengradsligninger på, hvor man hverken behøver at huske formel for diskriminant eller \(x \). Til gengæld kræver den, at man er stærk i kvadratsætningerne.

Metoden kaldes kvadratkomplettering.

Navnet skyldes, at det gælder om at lave et ”komplet kvadrat” altså omdanne venstresiden til noget, der har med en kvadratsætning at gøre.

Lad os gennemløbe metoden vha. et konkret eksempel.

Eksempel 1 Lad os prøve at løse ligningen:

\[3x^2 - 18x + 24 = 0 \]

Det første man gør er at rykke \(c \) (=24) hen på den anden side af lighedstegnet.

\[3x^2 - 18x = -24 \]
Dernæst dividerer vi med \(a = 3 \). Man skal huske at dividere alle led med \(a \).

\[
x^2 - 6x = -8
\]

Nu kommer det svære skridt. Man tager tallet foran \(x = -6 \), dividerer det med 2 (så får vi \(-3\)), sætter resultatet i anden potens \((-3)^2 \) og lægger det til på begge sider.

\[
x^2 + (-3)^2 - 6x = -8 + (-3)^2
\]

Nu kan vi samle venstre side til et ”komplet kvadrat” ved at bruge anden kvadratsætning

\[
x^2 + (-3)^2 - 6x = x^2 + (-3)^2 - 2 \cdot 3 \cdot x = (x - 3)^2
\]

Nu ser vores ligning sådan her ud:

\[
(x - 3)^2 = -8 + (-3)^2
\]

goed at reducere højresiden \((-8 + 9)\) får vi

\[
(x - 3)^2 = 1
\]

Nu tager vi kvadratroden på begge sider

\[
x - 3 = \pm \sqrt{1}
\]

Det er vigtigt at huske sit plus-minus-tegn foran kvadratroden, for ellers ville man komme til at miste en af løsningerne.

Nu er der kun tilbage at isolere \(x \)

\[
x - 3 = \pm \sqrt{1}
\]

\[
x = 3 \pm \sqrt{1}
\]

\[
x = 3 \pm 1
\]

\[
x = 2 \quad \lor \quad x = 4
\]
1.3 Faktorisering og nulreglen

Hvis man ønsker at løse ligningen

\[3 \cdot x = 0 \]

så er det klart, at \(x=0 \). Hvis vi skal gange et tal med noget og få 0, så er vi nødt til at gange med 0. Hvis vi i stedet ønsker at løse følgende ligning

\[x \cdot y = 0 \]

så er det klart, at enten skal \(x \) være 0, eller også skal \(y \) være 0 (eller også skal de begge to være 0). Det er det, vi kalder nulreglen. Med ord siger vi: "Hvis et produkt skal være lig med 0, så skal mindst en af faktorerne være lig med 0".

1.3.1 Faktorisering af andengradspolynomier

Hvis vi kender rødderne (nulpunktene) for et andengradspolynomium, kan vi faktorisere det. I stedet for at skrive det på standardformen, kan vi skrive det således

\[f(x) = a \cdot (x - r_1) \cdot (x - r_2) \]

hvor \(r_1 \) og \(r_2 \) er de to rødder.

Grunden til, at faktoriseringen ser sådan ud, er, at vi gerne vil have, at polynomiet giver 0, når vi sætter en af rødderne ind på \(x \)'s plads. Lad os tjekke om det virker.

\[f(r_1) = a \cdot (r_1 - r_1) \cdot (r_1 - r_2) = a \cdot 0 \cdot (r_1 - r_2) = 0 \]

\[f(r_2) = a \cdot (r_2 - r_1) \cdot (r_2 - r_2) = a \cdot (r_2 - r_1) \cdot 0 = 0 \]

1.3.2 Gæt løsningerne til en andengradsligning

Man kan bruge faktoriseringsmetoderne til hurtigt at gætte sig til løsningerne af en andengradslignon.

Lad os starte med at se på de andengradsligniner, hvor \(a=1 \).

Så kan andengradsligningen skrives

\[0 = a(x - r_1)(x - r_2) = 1 \cdot (x - r_1)(x - r_2) = (x - r_1)(x - r_2) \]

Hvis vi nu ganger parenteserne ud, får vi

\[0 = (x - r_1)(x - r_2) = x^2 - r_2x - r_1x + r_1r_2 \]
\[= x^2 - (r_1 + r_2)x + r_1r_2 \]

Hvis vi sammenligner med standardformen for andengradsligninger, så er

\[b = -(r_1 + r_2) \iff r_1 + r_2 = -b \]

\[c = r_1r_2 \]

Vi skal altså finde to tal, der sammenlagt giver \(-b\), og hvis produkt er \(c\). Så har vi fundet rødderne. Lad os tage et eksempel. Vi skal løse ligningen

\[x^2 + 2x - 3 = 0 \]

Da \(a=1\) kan vi bruge reglen ovenfor. De to løsninger, \(r_1\) og \(r_2\), skal altså give \(-2\) (= \(\cdot b\)), når man lægger dem sammen, og \(-3\) (= \(c\)), når man ganger dem med hinanden. Der er selvfølgelig kun ét talpar, der opfylder det, og det er talparret \(1\) og \(-3\)

\[1 + (-3) = 1 - 3 = -2 = -b \]

\[1 \cdot (-3) = -3 = c \]

Derfor er rødderne (dvs. løsningerne til andengradsligningen) \(x=1\) og \(x= -3\).
Vi kan skrive andengradsligningen

\[0 = (x - 1)(x - (-3)) = (x - 1)(x + 3) \]

Hvis vi ganger disse parenteser ud, får vi vores oprindelige ligning.

1.3.3 Gæt løsningerne, hvis \(a\) ikke er \(1\)

Hvis man ønsker at gætte løsningerne til en andengradsligning, hvor \(a\) ikke er \(1\), så skal man bare dividere med \(a\) på begge sider af lighedstegnet og så gøre som ovenfor.

\[ax^2 + bx + c = 0 \iff x^2 + \frac{b}{a}x + \frac{c}{a} = 0 \]

Rødderne \(r_1\) og \(r_2\) skal nu opfylde

\[r_1 + r_2 = -\frac{b}{a} \quad r_1r_2 = \frac{c}{a} \]
Et eksempel.

\[4x^2 - 12x + 8 = 0 \]

Vi beregner \(\frac{-b}{a} \) og \(\frac{c}{a} \):

\[\frac{-b}{a} = \frac{-12}{4} = -(-3) = 3 \]

\[\frac{c}{a} = \frac{8}{4} = 2 \]

Vi skal altså finde to tal der lagt sammen giver 3 og hvis produkt er 2. Det er selvfølgelig kun 1 og 2, der opfylder dette

\[1 + 2 = 3 = \frac{-b}{a} \]

\[1 \cdot 2 = 2 = \frac{c}{a} \]

Løsningerne på andengradsligningen er derfor x=1 eller x=2. Nu, hvor vi kender rødderne, kan vi faktorisere andengradsligningen.

\[0 = 4x^2 - 12x + 8 = 4(x - 1)(x - 2) \]

1.4 Toppunktformlen

Toppunktet for et andengradspolynomium er det punkt, hvor parablen (andenradspolynomiets graf) har sit maksimum eller minimum.

Hvis der er tale om en glad parabel, så vil toppunktet være minimum for grafen
og hvis der er tale om en sur parabel, så vil toppunktet være maksimum for grafen.

Der findes en formel for, hvordan man regner toppunktet ud. x-koordinaten, der under tiden betegnes T_x, udregnes således:

$$T_x = -\frac{b}{2a}$$

og y-koordinaten, der betegnes T_y, udregnes således:

$$T_y = -\frac{d}{4a}$$

Toppunktet er altså punktet:

$$(T_x, T_y) = \left(-\frac{b}{2a}, -\frac{d}{4a}\right)$$

1.5 Sammenhæng mellem forskrift og graf

Ud fra et andengradspolynomiums forskrift kan man sige rigtig meget om grafens udseende. Det betyder, at man let kan danne sig et overblik over, hvordan grafen ser ud, uden, at man behøver tegne den.

1.5.1 Betydningen af a

Fortegnet på tallet a afgør, om grafen er en glad eller sur parabel.

$$a > 0 \Leftrightarrow \text{parabel glad}$$

$$a < 0 \Leftrightarrow \text{parabel sur}$$
1.5.2 Betydningen af b

Fortegnet af tallet b afgør, om toppunktet ligger til højre eller venstre for y-aksen.

\[a \text{ og } b \text{ samme fortegn } \iff \text{Toppunkt til venstre for y-aksen} \]

\[a \text{ og } b \text{ forskellige fortegn } \iff \text{Toppunkt til højre for y-aksen} \]

\[b = 0 \iff \text{Toppunkt på y-aksen} \]

1.5.3 Betydning af c

Tallet c afgør, hvor grafen skærer y-aksen. Dette sker i punktet (0, c).

Dette skyldes, at når vi sætter x=0 i forskriften for andengradspolynomiet, så får vi, at funktionsværdien er c.

\[f(0) = a \cdot 0^2 + b \cdot 0 + c = c \]

1.5.4 Betydningen af d

d, diskriminanten, udregnes som bekendt således:

\[d = b^2 - 4ac \]

\[
d < 0 \Leftrightarrow \text{ingen nulpunkter} \quad d = 0 \Leftrightarrow 1 \text{ nulpunkt} \quad d > 0 \Leftrightarrow 2 \text{ nulpunkter}
\]
2 Trigonometri

2.1 Grundlæggende

I de følgende afsnit vil vi se nærmere på, hvordan du kan bruge cosinus og sinus i vilkårlige trekanter.

2.2 Cosinusrelationerne

Ofte kommer man ud for opgaver, hvor man i en trekant kender nogle sider og vinkler og bliver bedt om at finde nogle andre sider eller vinkler. Til at løse den slags opgaver er cosinusrelationerne et stærkt værktøj.

Det, der gør cosinusrelationerne til et stærkt redskab, er, at de gælder i vilkårlige trekanter. Det er altså ligegyldigt, om den trekant, vi arbejder med, er retvinklet, ligebenet, ligesidet eller ingen af delene. Vi kan bruge cosinusrelationerne til dem alle sammen.

2.2.1 Hvis man vil finde en side

Hvis man kender to sider og den vinkel, der er imellem siderne, kan man bruge cosinusrelationerne til at finde længden af den tredje side. Det gør man på følgende måde:

\[
\begin{align*}
a^2 &= b^2 + c^2 - 2bc \cos(A) \\
b^2 &= a^2 + c^2 - 2ac \cos(B) \\
c^2 &= a^2 + b^2 - 2ab \cos(C)
\end{align*}
\]

Grunden til de tre formler er, at det kommer an på hvilke sider, man kender, og hvilken, man vil finde.

2.2.2 Hvis man vil finde en vinkel

Hvis man kender alle tre sider i en trekant, og man ønsker at finde en vinkel, kan man bruge følgende formler

\[
\begin{align*}
\cos(A) &= \frac{b^2 + c^2 - a^2}{2bc} \\
\cos(B) &= \frac{a^2 + c^2 - b^2}{2ac} \\
\cos(C) &= \frac{a^2 + b^2 - c^2}{2ab}
\end{align*}
\]
Formlerne er faktisk præcist de samme som ovenfor, hvor man bare har isoleret cosinus til vinklen i stedet for en af siderne. Neden for ser vi, hvordan man kommer fra en af de tre øverste fomler til en af de tre nederste. Farverne markerer hvilke ting, vi har rykket rundt på.

\[a^2 = b^2 + c^2 - 2bc \cos(A) \]

\[a^2 + 2bc \cos(A) = b^2 + c^2 \]

\[2bc \cos(A) = b^2 + c^2 - a^2 \]

\[\cos(A) = \frac{b^2 + c^2 - a^2}{2bc} \]

2.3 Sinusrelationerne

Ofte kommer man ud for opgaver, hvor man i en trekant kender nogle sider og vinkler og bliver bedt om at finde nogle andre sider eller vinkler. Til at løse den slags opgaver er sinusrelationerne et stærkt værktøj.

Det, der gør sinusrelationerne til et stærkt redskab, er, at de gælder i vilkårlige trekanter. Det er altså ligegyldigt, om den trekant, vi arbejder med, er retvinklet, ligebenet, ligesidet eller ingen af delene. Vi kan bruge sinusrelationerne til dem alle sammen.

2.3.1 Hvis vi vil finde en side

Hvis vi kender to vinkler og den side, der står over for den ene, så kan vi bestemme den side, der står over for den anden vinkel ved hjælp af følgende formel.

\[\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \]

For eksempel kunne vi blive bedt om at finde siden c i følgende trekant

Vi kender vinklerne A og C samt den side, der står overfor vinkel A. Vi bruger sinusrelationerne. Vi tager kun de ting med, der er relevante for os, så i vores tilfælde udelader vi b’erne.

\[\frac{c}{\sin(C)} = \frac{a}{\sin(A)} \]

Vi starter med at isolere c ved at gange med \(\sin(C) \) på begge sider.

\[c = \frac{a \cdot \sin(C)}{\sin(A)} \]
Nu sætter vi tal ind på pladserne

\[c = \frac{8 \cdot \sin(75^\circ)}{\sin(40^\circ)} \]

\[c = \frac{8 \cdot 0,966}{0,643} \approx 12,02 \]

2.3.2 Hvis vi skal finde en vinkel

Hvis vi kender to sider og en vinkel, der står over for en af siderne, så kan vi finde den vinkel, der står over for den anden side. Vi bruger disse formler.

\[
\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}
\]

Forskellen mellem disse og dem, vi nævnte ovenfor, er, at man har byttet rundt på alle tællere og nævnere. Det er altid smartest, at det man skal finde står i tælleren!

2.4 Sinusrelationerne i stumpvinklede trekanter

Man skal være varsom med at bruge sinusrelationerne i stumpvinklede trekanter.

Hvis vi får at vide, at vi har en trekant ABC, hvor \(A=22^\circ \), \(a=5 \) og \(c=10 \) og bliver bedt om at finde vinkel C, så vilde vi normalt bruge sinusrelationerne.

\[
\frac{\sin C}{c} = \frac{\sin A}{a}
\]

\[
\sin C = \frac{c \cdot \sin A}{a}
\]

\[
\sin C = \frac{10 \cdot \sin(22)}{5} \approx 0,75
\]
\[C = \sin^{-1}(0,75) = 48,5^\circ \]

Vi får altså, at vinkel \(C \) er 48,5 grader, hvilket er mindre end 90, så vinkel \(C \) er spids. Imidlertid kan man konstruere en trekant, hvor \(A=22^\circ \), \(a=5 \) og \(c=10 \), men hvor vinkel \(C \) er stump.

![Diagram](image)

Vi kan altså konstruere to forskellige trekanter, der opfylder de givne oplysninger: En hvor vinkel \(C \) er spids, og en hvor den er stump. Når vi bruger sinusrelationerne, finder vi altid frem til den spidse vinkel.

Men heldigvis findes der er sammenhæng mellem vinklerne \(C_1 \) og \(C_2 \).

Der gælder nemlig at

\[C_1 = 180^\circ - C_2 \leftrightarrow C_2 = 180^\circ - C_1 \]

Hvis vores opgave i stedet havde lydt I trekanten ABC er \(A=22^\circ \), \(a=5 \), \(c=10 \), og der oplyses, at \(C \) er stump så kunne vi finde den spidse vinkel \(C_1 \) ved at bruge sinusrelationerne (som vist ovenfor).

Men da \(C_2 \) er den stumpe vinkel, kunne vi finde den ved hjælp af formlen ovenfor.

\[C_2 = 180^\circ - C_1 = 180^\circ - 48,5^\circ = 131,5^\circ \]

De to vinkler er hhv 48,5 og 131,5 grader store. Når man bruger \(\sin^{-1} \) på sin lommeregner, vil den altid give den spidse vinkel. Ønsker man i stedet den stumpe, skal man trække den spidse fra 180.

2.5 Arealformlen

Indenfor trigonometrien findes der en smart måde at regne arealet af en trekant ud, hvis man blot kender to sider og den mellemliggende vinkel. Man betegner tit arealet af en trekant med \(T \) (hvis
man brugte A ville man nemlig forveksle det med vinkel A).

\[T = \frac{1}{2}ab\sin(C) \]

For lettere at kunne huske denne formel, kaldes den ofte for "en halv appelsin-formlen - prøv selv at udtale højresiden og find ud af hvorfor.

Formlen gælder i vilkårlige trekanter, og man kan derfor også udtrykke den ved de andre sider og vinkler.

\[T = \frac{1}{2}ab\sin(C) = \frac{1}{2}bc\sin(A) = \frac{1}{2}ac\sin(B) \]

2.6 Grundrelationen

Grundrelationen er en sammenhæng mellem cosinus og sinus, som det er vigtigt at kunne. Man kan tit bruge den til at reducere udtryk.

Den lyder sådan her:

\[(\cos(v))^2 + (\sin(v))^2 = 1 \]

Relationen gælder lige meget hvilken vinkel, man putter ind i cosinus og sinus (så længe det er den samme i begge to).

Undertiden skriver man \(\cos^2(v)\) i stedet for \((\cos(v))^2\). Der er udelukkende tale om notation. Det betyder stadig \(\cos(v)\cdot\cos(v)\). Med den nye notation bliver grundrelationen

\[\cos^2(v) + \sin^2(v) = 1 \]

3 Funktioner

3.1 Definitions- og værdimængde

En funktion beskriver sammenhænge mellem variable. Vi kalder tit de variable for x og y. Man kan se funktioner som maskiner. Den uafhængige variabel, x, kommes ind i funktionen/makineriet, og så kommer den afhængige variabel, y, ud på den anden side. For hvert x må der kun være et y. Men der må godt være flere x’er der rammer det samme y.

3.1.1 Definitionsæmngde

Definitionsæmngden er alle de tal, vi må komme ind i funktionen. Tit er det alle de reelle tal, men nogle gange er der visse tal, hvor det ikke giver mening at komme dem ind i funktionen. Vi betegner definitionsæmngden \(Dm\), og hvis vi vil skrive, at det er definitionsæmngden for en funktion ved navn f, så skriver vi \(Dm(f)\).
3.1.2 Værdimængde

Mens definitionsmængden er alle de tal, man må komme ind i funktionen (alle de mulige x-værdier), så er værdimængden alle de mulige funktionsværdier (y-værdier). Værdimængden betegnes V_m, og hvis vi vil skrive værdimængden for funktionen f, så skriver vi $V_m(f)$.

Tit kan det være en fordel at se på grafen for at finde værdimængden.

3.2 Sammensatte funktioner

Tænk på et tal, læg 3 til. Gang resultatet med 2.

Her er den indre funktion $f(x) = x + 3$ mens den ydre funktion er $g(x) = 2x$.

Hvis vi havde tænkt på tallet 4, skulle vi altså først komme det ind i f.

$$f(4) = 4 + 3 = 7$$

Dette resultat, skulle vi så komme ind på x’s plads i g.

$$g(7) = 2 \cdot 7 = 14$$

I stedet for at gøre det af to omgange som ovenfor, så kan man spare tid og gøre det i én omgang. Det vi gjorde var jo at komme x ind i f, og så komme resultatet (dvs. $f(x)$) ind i g. Skrevet i en omgang $g(f(x))$. Man kommer altså $f(x)$ ind på x’s plads i g. Med eksemplet ovenfor svarer det til:

$$g(f(x)) = 2f(x) = 2(x + 3) = 2x + 6$$

Altså har vi fundet en forskrift for den sammensatte funktion $g(f(x))$. Man kan sætte sit x direkte ind her, og så slipper man for at gøre det af to omgange som ovenfor.

Vi tjekker, at vi får samme resultat som før ved at sætte 4 ind:

$$g(f(4)) = 2 \cdot 4 + 6 = 8 + 6 = 14$$

Man skal holde tungen lige i munden, før det er ikke ligegeydligt, hvilken funktion der er indre og ydre. Hvis vi f.eks. havde gjort det i den anden rækkefølge ovenfor ville vi få

$$f(g(x)) = g(x) + 3 = 2x + 3$$
3.2.1 Bolle-notationen

For at undgå de mange parenteser, som opstår ved sammensatte funktioner, bruger man en anden notation kaldet for *bolle-notation*.

\[f(g(x)) = (f \circ g)(x) \]

Man læser det som ”f bolle g af x”, og man kan sige, at man ”boller funktionen f med funktionen g”.

Hvis

\[f(x) = \sqrt{x} \quad og \quad g(x) = 3x \]

så er

\[(f \circ g)(x) = f(g(x)) = \sqrt{g(x)} = \sqrt{3x} \]

\[(g \circ f)(x) = g(f(x)) = 3f(x) = 3\sqrt{x} \]

Hvis

\[f(x) = 2x + 1 \quad og \quad g(x) = x^2 \]

så er

\[(f \circ g)(x) = f(g(x)) = 2g(x) + 1 = 2x^2 + 1 \]

\[(g \circ f)(x) = g(f(x)) = (f(x))^2 = (2x + 1)^2 = 4x^2 + 1 + 4x \]

Man kan også sætte sin funktion sammen med sig selv.

Hvis

\[f(x) = 2x^3 \]

så er

\[(f \circ f)(x) = f(f(x)) = 2f(x)^3 = 2(2x^3)^3 = 2(2^3x^9) = 16x^9 \]
3.3 Omvendte funktioner

3.3.1 Identitetsfunktionen

Identitetsfunktionen er en funktion, hvor det tal man kommer ind i funktionen er det samme som kommer ud.

\[Id(x) = x \]

3.3.2 Omvendte funktioner

To funktioner kaldes omvendte, hvis man får identitetsfunktionen ved at sammensætte dem. Man kan tænke på det som, at de to funktioner virker modsatrettet, så den ene annullerer det, den anden gør ved et x.

Et eksempel på omvendte funktioner er

\[f(x) = x^2 \quad og \quad g(x) = \sqrt{x}, \quad x \geq 0 \]

Vi tjekker at de er omvendte funktioner ved at sammensætte dem både den ene og den anden vej.

\[
(f \circ g)(x) = f(g(x)) = (g(x))^2 = (\sqrt{x})^2 = x
\]

\[
(g \circ f)(x) = g(f(x)) = \sqrt{f(x)} = \sqrt{x^2} = x
\]

Da vi ved at sammensætte dem fik x ud, er g og f omvendte funktioner. Hvis f er en funktion, betegner man tit dens omvendte funktion med \(f^{-1} \).

F.eks.

\[f(x) = \sqrt{x} \quad \Rightarrow \quad f^{-1}(x) = x^2 \]

Det er vigtigt at bemærke, at \(-1\) ikke skal forstås som en potens. Det er simpelthen bare et symbol, der betyder ”omvendt funktion”.

\[f^{-1}(x) \neq (f(x))^{-1} \]

Andre eksempler på omvendte funktioner er

\[e^x \quad og \quad \ln(x) \]

\[10^x \quad og \quad \log(x) \]

\[2x \quad og \quad \frac{x}{2} \]
Alle de trigonometriske funktioner har også omvendte funktioner.

\[\sin(x) \quad og \quad \sin^{-1}(x) \]

\[\cos(x) \quad og \quad \cos^{-1}(x) \]

\[\tan(x) \quad og \quad \tan^{-1}(x) \]

Omvendte funktioner kaldes også for inverse funktioner.

4 Geometri

4.1 Afstandsformlen

Afstandsformlen er en formel til at finde afstanden mellem to punkter, hvis vi blot kender deres koordinatsæt.

Hvis punktet A har koordinaterne \((x_1, y_1)\) og punktet B har koordinaterne \((x_2, y_2)\), så er afstanden mellem punkterne:

\[|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

De lodrette linjer betyder "afstanden mellem A og B" eller "længden af linjestykket mellem A og B".

4.2 Distanceformlen

Mens afstandsformlen bruges til at bestemme afstanden mellem to punkter, så bruges distanceformlen til at bestemme den korteste afstand mellem en ret linje og et punkt.

Vi kalder vores rette linje for \(l\), og vores punkt for \(P\). Da \(l\) er ret, har den ligningen \(y=ax+b\), og \(P\) har koordinatsættet \((x_1, y_1)\). Den korteste afstand mellem \(P\) og \(l\) er

\[\text{dist}(P,l) = \frac{|ax_1 + b - y_1|}{\sqrt{a^2 + 1}} \]

Den korteste afstand betyder den vinkelrette afstand, som man kan se på tegningen nedenfor.
4.3 Ortogonale linjer

Hvis to rette linjer ikke er parallelle, så vil de skære hinanden i et punkt. I dette punkt kan man måle vinklen mellem dem. Hvis vinklen mellem dem er 90°, så siger man, at de to linjer står vinkelret på hinanden, eller at de er ortogonale.

At to linjer er ortogonale er altså det samme som at de står vinkelret på hinanden.

På følgende tegning er linjerne l og m ortogonale.

Man skriver at to linjer er ortogonale ved at bruge følgende tegn

\[l \perp m \]

Der gælder en ret vigtig sætning om ortogonale linjer. Hvis vores linjer er givet ved ligningerne \(l: y = ax + b \) og \(m: y = cx + d \), så gælder der:

\[l \perp m \iff a \cdot c = -1 \]

Med ord vil det sige "to linjer er ortogonale hvis og kun hvis produktet af deres hældningskoefficienter er -1".

Dette gør det meget let at undersøge om to linjer er ortogonale. Man skal bare gange hældningerne med hinanden og se, om man får -1.
4.4 Cirklenes ligning

En cirkel er bestemt ud fra to ting: dens centrum og dens radius.

Hvis et punkt \(P(x,y) \) ligger på cirklenes periferi, så er afstanden mellem punktet og centrum lig med radius.

\[
|PC| = r
\]

Vi kan bruge afstandsformlen til at skrive lidt om på det.

\[
|PC| = r
\]

\[
\sqrt{(x-a)^2 + (y-b)^2} = r
\]

\[
(x-a)^2 + (y-b)^2 = r^2
\]

Den nederste ligning er den, vi kalder for cirklenes ligning. Hvis en cirkel har centrum i \(C(a, b) \) og radius \(r \), så er dens ligning

\[
(x-a)^2 + (y-b)^2 = r^2
\]

Det vil sige, at et punkt \(P(x, y) \) ligger på cirklen hvis og kun hvis koordinatsættet \((x, y) \) tilfredsstiller ligningen.

4.5 Omformning af cirklenes ligning

\[
(x-2)^2 + (y+1)^2 = 16
\]

er ligningen for cirklen med centrum i \(C(2, -1) \) og radius 4.
Ved hjælp af kvadratsætningerne kan vi udregne parenteserne

\[(x - 2)^2 + (y + 1)^2 = 16\]

\[(x^2 + 4 - 4x) + (y^2 + 1 + 2y) = 16\]

\[x^2 + y^2 - 4x + 2y + 5 = 16\]

\[x^2 + y^2 - 4x + 2y = 11\]

Vi starter med en ligning af den nederste type

\[x^2 + y^2 - 10x + 4y = -25\]

Idéen er at få samlet nogle af leddene ved hjælp af kvadratsætningerne.

\[x^2 - 10x\] og \[y^2 + 4y\]

skal altså ses som dele af kvadrater på toledede størrelser, hvor -10x og 4y svarer til de dobbelte produkter.

\[(x - 5)^2 = x^2 + 25 - 10x\]

\[(y + 2)^2 = y^2 + 4 + 4y\]

Vi har valgt tallene i parenteserne, således at vi får -10x og 4y til at være de dobbelte produkter. Hvis vi rykker tallene fra højre side hen på venstre, får vi

\[(x - 5)^2 - 25 = x^2 - 10x\]

\[(y + 2)^2 - 4 = y^2 + 4y\]

Højresiden er nu identisk med det, vi startede med. Derfor kan vi omforme vores ligning

\[x^2 + y^2 - 10x + 4y = -25\]
\[
x^2 - 10x + y^2 + 4y = -25
\]

\[
(x - 5)^2 - 25 + (y + 2)^2 - 4 = -25
\]

\[
(x - 5)^2 + (y + 2)^2 = -25 + 25 + 4
\]

\[
(x - 5)^2 + (y + 2)^2 = 4
\]

Nu kan vi aflæse cirklens centrum til (5, -2) og radius til 2 (kvadratroden af 4).

4.6 Cirkler og linjers skæring

Når man har med cirkler og linjer at gøre, kan det ofte være nyttigt at finde ud af, om de skærer hinanden, og hvad koordinatsættene til skæringspunkterne i så fald er.

Der er 3 muligheder for antal skæringer, når man ser på cirkler og linjer. Hvis linjen skærer cirklen er der to skæringspunkter, hvis linjen tangerer cirklen er der et røringspunkt, og hvis cirklen og linjen slet ikke krydser hinanden er der (selvfølgelig) ingen skæringspunkter.

Hvis man kender cirklens centrumkoordinater og linjens ligning, kan man beregne den vinkelrette afstand mellem centrum og linje ved hjælp af distanceformlen. Hvis denne afstand er mindre end radius vil der være to skæringer, hvis den er lig radius vil der være et røringspunkt, og hvis den er større end radius vil der ikke være nogen skæringer.

Eksempel:

Skærer linjen \(l: y=2x+4 \) cirklen \(C: (x-1)^2+(y+3)^2=36 \)?

Cirklens centrum er altså (1, -3) og radius er 6.

Vi finder afstanden mellem linjen og cirklen vha. distanceformlen

\[
\text{dist}(C, l) = \frac{|ax_1 + b - y_1|}{\sqrt{a^2 + 1}} = \frac{|2 \cdot 1 + 4 - (-3)|}{\sqrt{2^2 + 1}} = \frac{9}{\sqrt{5}} \approx 4,02
\]

Da afstanden mellem centrum og linje er mindre end radius er der altså to skæringer.
4.6.1 Bestemme koordinaterne for skæringspunkterne

Når man har bestemt antallet af skæringspunkter, kan man måske også være interesseret i at finde koordinaterne for disse skæringer. Dette gør man ved at sætte de to ligninger sammen. Man sætter linjens ligning ind på y’s plads i cirklenes ligning. Derved får vi en andengradsligning med x som eneste ubekendte. Den løser vi, og vi har så x-koordinaterne for. Disse indsættes så i linjens ligning for at finde de tilsvarende y-koordinater.
Vi illustrerer det med et eksempel.
Lad cirklen være givet ved ligningen

\[(x - 2)^2 + (y + 1)^2 = 20\]

og linjen ved ligningen

\[y = x + 3\]

Man kan tjekke efter, at der har to skæringer. For at finde koordinaterne til skæringerne sættes udtrykket for y i linjens ligning ind i cirklenes ligning.

\[(x - 2)^2 + (x + 3 + 1)^2 = 20\]

\[(x - 2)^2 + (x + 4)^2 = 20\]

Nu udregner vi parenteserne ved hjælp af kvadratsætninger

\[(x - 2)^2 + (x + 4)^2 = 20\]

\[x^2 + 4 - 4x + x^2 + 16 + 8x = 20\]

\[2x^2 + 4x + 20 = 20\]

\[2x^2 + 4x = 0\]

Vi har nu en andengradsligning, som vi løser ved hjælp af nulreglen

\[2x^2 + 4x = 0\]
\[2x(x + 2) = 0 \]

\[x = 0 \lor x = -2 \]

Disse to x-værdier er x-koordinaterne for de to skæringspunkter. Ved at indsætte dem i linjens ligning, får vi de tilsvarende y-værdier.

\[y = x + 3 \]

\[y_1 = 0 + 3 = 3 \]

\[y_2 = -2 + 3 = 1 \]

Skæringspunkterne er altså

\[(0, 3) \text{ og } (-2, 1) \]
5 Differentialregning

5.1 Afledede funktioner

I praksis gider man ikke bruge tretrinsreglen hver gang, man skal differentiere en funktion. Der er derfor nogle regler, man kan bruge. De er alle sammen udledt vha. tretrinsreglen

\[
\begin{array}{c|c}
 f(x) & f'(x) \\
 \hline
 x & 1 \\
 kx & k \\
 k & 0 \\
 x^n & nx^{n-1} \\
 \frac{1}{x} & -\frac{1}{x^2} \\
 a^x & a^x \ln(a) \\
 e^x & e^x \\
 e^{kx} & k \cdot e^{kx} \\
 \sqrt{x} & \frac{1}{2\sqrt{x}} \\
 \ln(x) & \frac{1}{x} \\
 \sin(x) & \cos(x) \\
 \cos(x) & -\sin(x)
\end{array}
\]

5.2 Regneregler for differentialkvotienter

5.2.1 Sumreglen

Hvis man ønsker at differentiere summen af to funktioner, så kan man bare differentiere dem hver for sig. Det samme gælder med differensen af to funktioner. Med symboler, kan vi skrive det således.

\[
h(x) = f(x) \pm g(x) \Rightarrow
\]

\[
h'(x) = f'(x) \pm g'(x)
\]

Med ord siger vi ”differentialkvotienten af en sum er lig med summen af differentialkvotienterne”.
5.2.2 Konstantreglen

Hvis vi ønsker at differentiere en funktion, der er ganget med en konstant, så skal vi bare lade konstanten stå og så differentiere funktionen.

\[g(x) = k \cdot f(x) \Rightarrow \]
\[g'(x) = k \cdot f'(x) \]

5.2.3 Produktreglen

Hvis man vil differentiere to funktioner, der er ganget med hinanden, er det desværre ikke nær så let.

\[h(x) = f(x) \cdot g(x) \Rightarrow \]
\[h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \]

Man kan huske reglen ved at man skal "diffe, beholde + beholde og diffe".

5.2.4 Kvotientreglen

Hvis man vil differentiere to funktioner, der er divideret med hinanden, så er regnereglen endnu sværere.

\[h(x) = \frac{f(x)}{g(x)} \Rightarrow \]
\[h'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2} \]

5.3 Tangentens ligning

Man kan bruge differentialregning til at bestemme en ligning for tangenten i et bestemt punkt på en funktion.

Hvis funktionen f er differentiabel i punktet \((x_0, f(x_0))\) - dvs. hvis der ikke er et knæk i det punkt - så er ligningen for tangenten i det punkt givet ved

\[y = f(x_0) + f'(x_0) \cdot (x - x_0) \]

Når vi bruger denne formel, skal vi sætte noget ind, der hvor der står \(x_0\), \(f(x_0)\) og \(f'(x_0)\). Men \(x\) og \(y\) skal vi lade være variable.
5.4 Monotoniforhold

At bestemme en funktions monotoniforhold svarer til at bestemme i hvilke intervaller, funktionen er voksende, og i hvilke, den er aftagende. Kender man monotoniforholdene, har man en idé om, hvordan grafen ser ud uden man behøver at tegne den. Differentialregning gør det meget lettere at bestemme monotoniforholdene.

Differentialkvotienten i et punkt er jo lig med tangentens hældning i det punkt, så derfor gælder der, at hvis differentialkvotienten er positiv i et punkt, vil tangentens hældning være positiv, og funktionen vil altså være voksende i det punkt. Hvis der er et interval, hvor differentialkvotienten er positiv i alle punkter, så må alle tangenthældningerne altså være positive, og funktionen er derfor voksende på hele intervallet. På samme måde vil et interval med negative differentialkvotienter give et interval, hvor funktionen aftager. Hvis differentialkvotienten er 0 i et interval, betyder det, at tangenthældningen er 0 (tangenten er vandret) og dermed er funktionen konstant på intervallet.

Lad os sammenfatte det

\[f'(x) > 0 \text{ for alle } x \in [a, b] \implies f \text{ voksende på } [a, b] \]

\[f'(x) < 0 \text{ for alle } x \in [a, b] \implies f \text{ aftagende på } [a, b] \]

\[f'(x) = 0 \text{ for alle } x \in [a, b] \implies f \text{ konstant på } [a, b] \]

5.4.1 Maksimum, minimum og vendetangent

Det første, man gør, når man skal bestemme monotoniforholdene for en funktion, er at differentiere funktionen og sætte den afledede lig med 0. Man løser altså ligningen

\[f'(x) = 0 \]

De x-værdier, der løser denne ligning, er dem, hvor tangenten er vandret. Der er tre muligheder for, hvad disse punkter kan være. De kan være maksimumspunkter, minimumspunkter eller vendetangentpunkter.

Imellem to punkter, hvor \(f' \) er 0 er den enten positiv på hele interвалlet eller negativ på hele intervallet. Hvis den skulle skifte mellem at være positiv og negativ ville den jo være nødt til at passere 0.

Altså kan vi undersøge, om \(f' \) er positiv eller negativ i intervallerne mellem nulpunkterne vedbare at vælge et tilfældigt punkt i interвалlet og se på fortægnet af \(f' \) i dette punkt.

Hvis \(f' \) er positiv til venstre og negativ til højre for et nulpunkt, så er der tale om et maksimum. Hvis \(f' \) er negativ til venstre og positiv til højre for et nulpunkt, er der tale om et minimum. Hvis \(f' \) har samme fortægt til venstre og højre, er der tale om en vendetangent.

5.4.2 Monotonilinje

Vi kan tegne resultaterne ind i en monotonilinje.

Man tegner en tallinje. Ovenover den har man x, under den \(f' \) og \(f \).
Først tegner man de x-værdier ind, hvor $f'(x) = 0$. Man skriver derfor 0 ud for f' ved disse x-værdier. Dernæst indtegner man fortegnene for f' mellem disse værdier. Til sidst tegner man pile alt efter, hvad det betyder for f. Under et plus tegner man en pil der går opad mod højre og under et minus tegner man en pil, der går nedad mod højre. Når man har tegnet pilene kan man se, hvad der er lokale maksima og minima, og hvad der er vendetangenter. Her er monotonilinjen tegnet skridt for skridt for eksemplet herover.

$$
\begin{array}{c}
\frac{\pi}{r} & \frac{\pi}{r} & \frac{\pi}{r} & \frac{\pi}{r} & \frac{\pi}{r} & \frac{\pi}{r} \\
\end{array}
$$

Man skal altid afslutte med at konkludere, hvordan monotoniforholdene er. I dette tilfælde ville man skrive:

f er aftagende på intervallerne $(-\infty; -2]$ og $[0; \infty[$

f er voksende på intervallet $[-2; 0]$.

f har lokalt minimum i $(-2, f(-2))$ og lokalt maksimum i $(0, f(0))$.

Herunder er f tegnet, så man kan se, at det er det rigtige, man er nået frem til

Side 30
5.4.3 Opsummering
For at opsummere er der følgende opskrift, man altid kan følge for at finde monotoniforholdene for en funktion.

1. Differentier funktionen
2. Løs ligningen $f'(x) = 0$
3. Bestem fortegnet for $f'(x)$ mellem nulpunkterne.
4. Tegn monotonilinje
5. Konkluder med tekst

5.5 Optimering
En af de vigtigste anvendelser indenfor differentialregning er optimering.

5.5.1 Op skrift
Her følger en opskrift på hvordan du løser optimeringsproblemer

1. Opskriv den funktion, du skal optimere
2. Opskriv den bibetingelse, du er blevet givet.
3. Isoler den ene variabel i bibetingelsen
4. Indsæt udtrykket for denne variabel i den funktion, du skal optimere.
6. Differentier funktionen
7. Løs ligningen $f'(x)=0$
8. Bestem fortegnene for f' mellem løsningerne
9. Tegn monotonilinjen

6 Integralregning
6.1 Stamfunktion
Stamfunktione berettes ofte med store bogstaver. Hvis vores oprindelige funktion hedder f, betegner vi således dens stamfunktion(er) med F.
Det, der skal til for at være en stamfunktion, er, at hvis man differentierer stamfunktionen, får man den oprindelige funktion.
Man kan med andre ord sige, at F er en stamfunktion til f hvis

$$F'(x) = f(x)$$
6.1.1 Integrationsprøven

Hvis man er i tvivl om man er kommet frem til den rigtige stamfunktion, findes der en måde at prøve det efter på. Man differentierer simpelthen bare den formodede stamfunktion og ser, om man får den oprindelige funktion frem. Denne metode (som egentlig bare er definitionen på hvad en stamfunktion er) er så nyttig, at den har fået sit eget navn: Integrationsprøven.

Eksempelvis kunne man blive bedt om at afgøre om
\[F(x) = 2x^2 + 3x^3 \]
er stamfunktion til
\[f(x) = 4x + 10x^2 \]

Vi tester det vha. integrationsprøven:
\[F'(x) = 2 \cdot 2x^{2-1} + 3 \cdot 3x^{3-1} = 4x + 9x^2 \neq f(x) \]

Da vi ikke nåede frem til f, er F ikke stamfunktion til f.

6.2 Ubestemt integral

Før vi går i gang med at definere bestemte og ubestemte integraler vil vi gennemgå lidt notation og terminologi.

For at vide, at man skal integrere en funktion, markerer man det med et integraltegn. Et integraltegn består af to dele. Til venstre skriver man et "langt s" og til højre skriver man et "d" efterfulgt af den variabel, man integrerer med hensyn til (oftest bare dx). S’et såvel som dx er bare rene symboler.

Imellem dem står den funktion, man ønsker at integrere. Denne kaldes *integranden*, men omtales tit som "indmaden". De bestemte integraler har derudover en øvre og en nedre integrationsgrænse, som man skriver ved hhv. top og bund af det lange s.

![Integraltegn og integrand](image)

6.2.1 Ubestemt integral

I forrige afsnit definerede vi, hvad en stamfunktion er. At finde det ubestemte integral til en funktion f er simpelthen bare at bestemme en stamfunktion til f. Skrevet matematisk:
\[\int f(x) \, dx = F(x) \]

Dette læses som "det ubestemte integral af \(f \) (mht. \(x \)) er lig med en stamfunktion til \(f \)".

Man skal huske at tilføje en konstant til den stamfunktion, man finder. På den måde har man nemlig skrevet alle stamfunktionerne op på én gang.

Lad os finde nogle ubestemte integraler.

Hvis

\[f(x) = x \]

så er

\[F(x) = \int x \, dx = \frac{1}{2}x^2 + k . \]

Vi tjekker om det er rigtigt vha. integrationsprøven

\[F'(x) = \left(\frac{1}{2}x^2 + k \right)' = \frac{1}{2} \cdot 2x^{2-1} + 0 = \frac{1}{2}x = x = f(x) . \]

Hvis vi i stedet har

\[f(x) = x^4 + \frac{1}{x}, \quad x > 0 \]

så er

\[F(x) = \int x^4 + \frac{1}{x} \, dx = \frac{1}{5}x^5 + \ln(x) + k, \quad x > 0 . \]

Igen tjekker vi efter med integrationsprøven

\[F'(x) = \left(\frac{1}{5}x^5 + \ln(x) + k \right)' = \frac{1}{5} \cdot 5x^{5-1} + \frac{1}{x} + 0 = x^4 + \frac{1}{x} = f(x) \]

6.2.2 Bestem en stamfunktion gennem et punkt

Ovenfor har vi brugt det ubestemte integral til at finde alle stamfunktioner til en funktion. I visse tilfælde kan det være nyttigt at finde en bestemt stamfunktion.

En opgave kunne f.eks. lyde:

\[f(x) = 6x^2 + 4x \]

Find den stamfunktion til \(f \), der går igennem punktet \((-1, 3)\).

Først finder vi alle stamfunktionerne, og hagefør bestemmer vi \(k \) ud fra vores startbetingelse.

\[F(x) = \int 6x^2 + 4x \, dx = 2x^3 + 2x^2 + k \]
(Du kan selv tjekke efter med integrationsproven, at dette er rigtigt).
Nu ønsker vi at finde ud af hvilken af disse stamfunktioner, der går gennem (-1, 3).
Vi sætter -1 ind på x’s plads og 3 på stamfunktionsværdiens plads.

\[
\begin{align*}
F(-1) &= 3 \\
2 \cdot (-1)^3 + 2 \cdot (-1)^2 + k &= 3 \\
-2 + 2 + k &= 3 \\
k &= 3
\end{align*}
\]

Den stamfunktion vi leder efter har altså \(k = 3 \). Derfor er svaret på opgaven

\[F(x) = 2x^3 + 2x^2 + 3 \]

Nedenfor er indtegnet forskellige stamfunktioner til \(f \).
Kun én af dem går igennem (-1, 3).

6.3 Integrerede funktioner

Nedenfor er en liste over, hvordan man integrerer forskellige funktioner.
Det er underforstået, at man skal huske at lægge en konstant til stamfunktionerne.
Man kan tjekke dem alle sammen efter vha. integrationsproven.
\[f(x) \quad F(x) \\
x \quad \frac{1}{2}x^2 \\
k \quad kx \\
kx \quad \frac{k}{2}x^2 \\
x^n \quad \frac{1}{n+1}x^{n+1} \\
\frac{1}{x} \quad -\frac{1}{x^2} \\
\frac{1}{x} \quad \ln(|x|) \\
a^x \quad \frac{a^x}{\ln(a)} \\
e^x \quad e^x \\
e^{kx} \quad \frac{1}{k} \cdot e^{kx} \\
\sqrt{x} \quad \frac{2}{3}x^{3/2} = \frac{2}{3}(\sqrt{x})^3 \\
\ln(x) \quad x \cdot \ln(x) - x \\
\cos(x) \quad \sin(x) \\
\sin(x) \quad -\cos(x) \]

6.4 Regneregel for integraler

Ligesom med differentialregningen findes der også regneregel for, hvordan man integrerer summer og differenser af funktioner samt hvordan, man integrerer produktet af en funktion og en konstant. Alle disse regler kan eftervises vha. integrationsprøven

6.4.1 Sumreglen

Den første regel er sumreglen

\[\int f(x) + g(x) \, dx = \int f(x) \, dx + \int g(x) \, dx \]

Hvis man skal integrere summen af to funktioner, integrerer man hver funktion for sig og lægger bagefter sammen. Med andre ord: ”Integralet af en sum er summen af integralerne”

6.4.2 Differensreglen

Differensreglen minder meget om sumreglen. Eneste forskel er, at man her betragter differensen af to funktioner
\[
\int f(x) - g(x) \, dx = \int f(x) \, dx - \int g(x) \, dx
\]

Med ord siger vi, at "integralet af en differens er differensen af integralerne".

6.4.3 Produkt af konstant og funktion

Hvis vi ønsker at integrere produktet af en konstant og en funktion, så lader vi bare konstanten stå og ganger den på integralet af funktionen.

\[
\int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx
\]

6.5 Bestemt integral og areal

En af de vigtigste forskelle på det bestemte og det ubestemte integral er, at mens det ubestemte integral giver en funktion (nemlig stamfunktionen) så giver det bestemte integral et tal.

\[
\int f(x) \, dx = \text{funktion}
\]

\[
\int_a^b f(x) \, dx = \text{tal}
\]

De to tal a og b kaldes integrationsgrænserne. Man udregner et bestemt integral på følgende måde

\[
\int_a^b f(x) \, dx = [F(x)]_a^b = F(b) - F(a)
\]

Dette betyder, at man først finder en stamfunktion til f. Denne stamfunktion skriver man inde i kantede parenteser med de to integrationsgrænser til højre. Derefter sætter man den øvre integrationsgrænse (b) ind på x’s plads, hvorefter man sætter den nedre integrationsgrænse (a) ind på x’s plads og trækker fra.

Et eksempel kunne være.

\[
\int_0^2 6x^2 \, dx = \frac{[2x^3]_0^2}{F(x)} = 2 \cdot \frac{2^3}{F(b)} - 2 \cdot \frac{0^3}{F(a)} = 16
\]

Bemærk, at vi bare fandt en tilfældig stamfunktion til f uden at tænke på at lægge en integrationskonstant til. Sådan er det altid med bestemte integraler.

6.5.1 Areal

Ovenfor sagde vi, at det bestemte integral giver et tal. Nogle gange er dette tal lig med arealet mellem funktionen f og x-aksen i intervallet [a;b]. Men det er ikke altid. Det er kun hvis f er positiv på hele intervallet [a;b]. Dvs. at grafen for f ligger ovenover x-aksen på hele intervallet.
6.6 Areal mellem to funktioner

Hvis vi ønsker at finde arealet mellem to grafer, kan vi også bruge det bestemte integral. Det kræver, at den ene funktion har større funktionsværdier end den anden på hele intervallet \([a;b]\). Hvis \(f\) har større funktionsværdier end \(g\), er arealet mellem de to funktioner givet ved

\[
\text{Areal}_{fg} = \int_a^b f(x) - g(x) \, dx
\]

Bemærk, at det er ligegyldigt, om de to funktioner har positive eller negative funktionsværdier på intervallet, når bare \(f\) har større funktionsværdier end \(g\).
7 Sandsynlighed og kombinatorik

7.1 Grundlæggende begreber

Inden for alle fag er der en særlig terminologi (nogle bestemte ord, der bruges meget og betyder noget helt særligt lige i denne sammenhæng). Sådan er det også inden for sandsynlighedsregningen. I dette afsnit vil vi gennemgå nogle af de vigtigste begreber indenfor sandsynlighedsregningen.

7.1.1 Udfaldsrum

Udfaldsrummet er det univers, vi bevæger os indenfor. Alle de mulige udfald, der er for det eksperiment, vi foretager os. Hvis vi kaster med en terning og er interesserede i, hvor mange øjne, den viser, er udfaldsrummet

\[U = \{1, 2, 3, 4, 5, 6\} \]

Der er altså 6 forskellige udfald.

Hvis vi i stedet havde kastet med to terninger, ville hvert udfald være to tal. F.eks (4,3), der ville betyde, at den første terning viste en 4'er og den anden en 3'er. I dette tilfælde ville udfaldsrummet bestå af 36, forskellige udfald (den første terning kan vise 6 forskellige værdier og for hver af dem kan den anden terning vise 6 forskellige værdier. I alt er der altså 6*6=36 forskellige muligheder)

\[U = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), ..., (6, 4), (6, 5), (6, 6)\} \]

7.1.2 Sandsynlighed

Hvert element i udfaldsrummet er tilknyttet en sandsynlighed. Man betegner sandsynligheden med et lille p.

I tilfældet med én terning, er sandsynlighederne for hvert udfald den samme. Der er 6 sider på terningen, så sandsynligheden for hvert udfald er 1/6

\[p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = \frac{1}{6} \approx 0,1667 \]

I tilfældet med to terninger, er der 36 mulige udfald. De er alle sammen lige sandsynlige, så sandsynligheden er

\[\frac{1}{36} \approx 0,02778 \]

for hvert udfald.

Hvis alle udfald er lige sandsynlige, kalder vi det et symmetrisk sandsynlighedsfelt. De to eksempler ovenfor er symmetriske sandsynlighedsfelte.

Eksemplet med skålen med 4 bolde, hvor 3 er røde og 1 er blå er ikke symmetrisk, da

\[p(\text{Rød}) = \frac{3}{4} = 0,75, \quad p(\text{Blå}) = \frac{1}{4} = 0,25 \]

Side 38
7.1.3 Hændelse

En hændelse, \(H \), er en delmængde af udfaldsrummet. F.eks. kunne man i forsøget med én terning se på hændelsen

\[
H = \{ \text{Antal øjne der er ulige} \}
\]

De elementer i udfaldsrummet, der opfylder dette, er 1, 3 og 5.
Vi markerer sandsynligheden for, at en hændelse indtræffer med et stort \(P \). Man finder frem til sandsynligheden for en hændelse ved at lægge alle sandsynlighederne for de enkelte elementer i hændelsen sammen.

\[
P(H) = p(1) + p(3) + p(5) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6} = 0,5
\]

Hvis der er tale om et symmetrisk sandsynlighedsfelt, er sandsynligheden for en hændelse

\[
P(H) = \frac{\text{Antal gunstige udfald}}{\text{Antal mulige udfald}}
\]

F.eks. kunne en hændelse ved to terningekast være

\[
H = \{ \text{summen af øjnene er } 5\}
\]

De gunstige udfald er (1,4), (2,3), (3,2) og (4,1). Altså er der 4 gunstige udfald. Vi indsætter i formlen:

\[
P(H) = \frac{4}{36} \approx 0,1111
\]

7.1.4 Komplementær hændelse

Nogle gange er det lettere at regne sandsynligheden ud for, at en hændelse ikke sker. Hvis vores hændelse hedder, \(H \), så betegner vi den hændelse, at \(H \) ikke indtræffer med \(\bar{H} \)

Vi kalder det, den komplementære hændelse. Det er klart, at enten sker \(H \) eller også sker den ikke. Derfor gælder der, at summen af sandsynlighederne må blive 1 (alså 100%)

\[
P(H) + P(\bar{H}) = 1
\]

\[
P(H) = 1 - P(\bar{H})
\]
Vi slår med tre terninger, og ønsker at finde sandsynligheden for, at vi får mindst én sekser. Vores hændelse er altså

\[H = \{ \text{mindst 1 sekser} \} \]

Det er imidlertid ikke helt let at beregne, hvor mange gunstige udfald, der er for denne hændelse. Den komplementære hændelse må være:

\[\overline{H} = \{ \text{ingen seksere} \} \]

Det er noget lettere at udregne sandsynligheden for, at denne hændelse indtræffer. Når der ikke må være nogen seksere, er der nemlig fem gunstige udfald på den første terning (1, 2, 3, 4 eller 5). For hver af dem er der 5 gunstige udfald på den næste terning, og for hver af dem er der endnu 5 gunstige udfald på den tredje. Altså må sandsynligheden være

\[
P(\overline{H}) = \frac{\text{Antal gunstige udfald}}{\text{Antal mulige udfald}} = \frac{5 \cdot 5 \cdot 5}{6 \cdot 6 \cdot 6} = \frac{125}{216} \approx 0,579
\]

Ved at trække denne sandsynlighed fra 1, får vi sandsynligheden for \(H \).

\[
P(H) = 1 - P(\overline{H}) = 1 - 0,579 = 0,421
\]

Altså er der 42,1% sandsynlighed for at få mindst én sekser, hvis man har tre slag. Det kan være nyttigt at vide, når man spiller ludo!

7.2 Fakultetsfunktionen

En god del sandsynlighedsregning har med kombinatorik at gøre, og man får svært ved at klare sig gennem kombinatorik uden kendskab til fakultetsfunktionen. Man betegner fakultetsfunktionen med et udskæring.

De tal, man kan tage fakultet af er de naturlige tal samt nul. Man kan altså ikke bruge den på negative tal eller decimaltal.

Man tager fakultetsfunktionen til et tal ved at gange tallet med det tal, der er 1 mindre, og gange med det, der er 1 mindre end det, osv. indtil man når ned til at gange med 1.

\[
n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1
\]

F.eks. er

\[
4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24
\]

og

\[
6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720
\]

I visse dele af kombinatorikken kan man komme ud for at man skal bruge 0!
Derfor har man defineret

\[0! = 1 \]

Denne definition giver ikke mening i forhold til, hvordan man tager fakultet af de andre tal, men den er defineret sådan, for at man når frem til de rigtige resultater, når man bruger de kombinatoriske formler med samme værdi af \(n \) og \(r \) (se evt. de næste afsnit for mere om dette).

7.3 Multiplikations- og additionsprincipperne

Når man skal tælle kombinationer, er der nogle få regler, man skal huske på. Nogle af de vigtigste er multiplikations- og additionsprincipperne.

7.3.1 Multiplikationsprincippet

Hvis opgaven \(t_1 \) kan udføres på \(m \) forskellige måder, og opgaven \(t_2 \) kan udføres på \(n \) måder, så kan opgaven \(t_1 \) og \(t_2 \) udføres på \(m \cdot n \) måder. Opgaven \(t_1 \) eller \(t_2 \) kan udføres på \(m + n \) måder.

Lad os tage et eksempel.

Vi går ind i en isbutik hvor vi vil have en is med 1 kugle.

- Man kan vælge, om man vil have i bæger eller vaffel.
- Man kan vælge mellem 3 slags is: chokolade, vanille og jordbær.
- Man kan vælge om man vil have: syltetøj, flødebolle, guf eller ingenting ovenpå.

På hvor mange måder kan man lave en is med 1 kugle?

Lad os kalde valget mellem bæger og vaffel for \(t_1 \). Det kan udføres på 2 måder.
Lad os kalde valget af is for \(t_2 \). Det kan udføres på 3 forskellige måder.
Lad os endelig kalde valget af topping for \(t_3 \). Det kan udføres på 4 måder.

Da vi skal vælge en fra hver kategori, skal vi altså udføre \(t_1 \) og \(t_2 \) og \(t_3 \). Derfor gør vi brug af multiplikationsprincippet. Vi skal altså gange antallet af muligheder med hinanden.

\[2 \cdot 3 \cdot 4 = 24 \]

Vi har illustreret det med en tegning, hvor alle valgmulighederne fremstår ved at gå oppefra og ned.
7.3.2 Additionsprincippet

Hvis vi er lidt mere kræsne og ikke kan lide guf og syltetøj, kan vi se på, hvor mange måder man kan lave en is med 1 kugle, hvor der hverken er guf eller syltetøj på.
Vi skal altså lave en is, hvor der er enten flødebolle eller ingenting på toppen.
Vi kalder antallet af muligheder med flødebolle for \(t_1 \). Nu skal vi vælge 1 af de 2 type beholdere, 1 af de 3 slags is, men toppingen er allerede bestemt til at være flødebolle. Altså kan \(t_1 \) udføres på 6 (=\(2 \times 3 \times 1 \)) måder.
Vi kalder antallet af muligheder med ingenting på toppen for \(t_2 \). Her kan vi ligeledes vælge 1 af 2 beholdere, og 1 af 3 typer is, mens toppingen er forudbestemt til at være ingenting. Altså kan \(t_2 \) udføres på 6 (=\(2 \times 3 \times 1 \)) måder.
Vi var interesserede i, at finde frem til, hvor mange måder, vi kunne vælge enten med flødebolle eller uden topping. Altså \(t_1 \) eller \(t_2 \). Vi bruger additionsprincippet.

\[
6 + 6 = 12
\]

Der er altså 12 måder at lave en is med enten flødebolle eller ingen topping.
De to principper ovenfor virker måske banale, men det er yderst vigtigt, du kan skelne mellem dem, når du skal udregne sandsynligheder i mere komplicerede tilfælde.
Du kan se begge principper anvendt her!

7.4 Kombinatorik

Kombinatorik er læren om at tælle kombinationer. Antal kombinationer uden tilbagelæg og ligegyldig rækkefølge: Formel hvis man ønsker at udvælge \(r \) elementer af en mængde, der består af \(n \) elementer uden tilbagelæg og ligegyldig rækkefølge.

\[
K_{n,r} = \frac{n!}{r! \cdot (n-r)!}
\]

Hvis man f.eks. ville finde ud af, hvor mange pokerhænder, der eksisterer, altså hvor mange måder man kan uddele 5 kort fra en bunke på 52, hvor rækkefølgen er ligegyldig (vi er jo ligeglade med om vi får Spar Es som første eller sidste kort), bruger man formlen herover

\[
K_{52,5} = \frac{52!}{5! \cdot (52-5)!} = \frac{52!}{5! \cdot 47!} = 2.598.960
\]

Der er altså over 2,5 millioner forskellige pokerhænder!

7.4.1 Hvis rækkefølgen betyder noget

Hvis vi vil udvælge \(r \) elementer fra en mængde på \(n \) mulige, hvor vi kun må vælge hvert element én gang, og hvor rækkefølgen betyder noget, kan det gøres på følgende antal måder:

\[
P_{n,r} = \frac{n!}{(n-r)!}
\]

Vi spiller Mastermind, hvor man skal vælge en kode bestående af 4 farver ud af de 8, der er med i spillet. Hver farve må kun vælges én gang, og rækkefølgen af farverne tæller. Vi spekulerer på, hvor
mange forskellige kombinationer, man kan komme frem til. Svaret er

\[P_{8,4} = \frac{8!}{(8-4)!} = \frac{8!}{4!} = 1680 \text{ forskellige koder} \]

7.5 Kombinatorik og sandsynlighed

Man kan bruge kombinatorik i sandsynlighedsregning. Her kommer et eksempel på hvordan. Det kan være en god idé at læse afsnittet om kombinatorik først.

7.5.1 Eksempel

Hvad er sandsynligheden for at få en pokerhånd med 3 esser?

En pokerhånd består af 5 kort, og i alt er der 52 kort. Antallet af forskellige pokerhænder må derfor være:

\[K_{52,5} = \frac{52!}{5! \cdot 47!} = 2.598.960 \]

At få en hånd med 3 esser svarer til at trække 3 esser ud af de 4 esser, samt at trække 2 øvrige kort ud af de 48 kort, der ikke er esser. Det bliver altså til

\[K_{4,3} \cdot K_{48,2} = \frac{4!}{3! \cdot 1!} \cdot \frac{48!}{2! \cdot 46!} = 4 \cdot 1128 = 4512 \]

forskellige hænder, der indeholder tre esser.

Nu kan vi udregne sandsynligheden

\[P(H) = \frac{\text{gunstige}}{\text{mulige}} = \frac{K_{4,3} \cdot K_{48,2}}{K_{52,5}} = \frac{4.512}{2.598.960} \approx 0.00174 \]

Der er altså kun 0.174 % chance for at få en hånd med tre esser i et spil poker.

7.6 Stokastisk variabel

Det er ikke alle udfaldsrum der består af tal. Kaster man f.eks. en mønt, er udfaldsrummet

\[U = \{\text{plat, krone}\} \]

Imidlertid kan det undertiden være en fordel at man kan beskrive alle udfald ved hjælp af tal.
Det er dét, man bruger en stokastisk variabel til.
En stokastisk variabel betegnes med et stort bogstav. Oftest X eller Y.
En stokastisk variabel er egentlig en funktion, hvor man til hvert element i udfaldsrummet har knyttet et tal.
F.eks. kunne man i eksemplet med møntkastet have tilknyttet den stokastiske variabel X, hvor

\[X(\text{kroner}) = 1, \quad X(\text{plat}) = 0 \]

Hvis vi skal skrive sandsynligheden for, at få kroner, så gøres det på følgende måde

\[P(X = 1) = 0.5 \]

Man skriver altså sandsynligheden for, at den stokastiske variabel antager værdien 1.

Og sandsynligheden for at slå plat, ville man skrive

\[P(X = 0) = 0.5 \]

7.6.1 Diskret vs. kontinuert

Der findes to slags stokastiske variable: de diskrete og de kontinuerede.

En diskret stokastisk variabel kan antage et endeligt antal værdier

En kontinueret stokastisk variabel kan antage uendeligt mange værdier (typisk et interval).

Eksemplerne ovenfor er begge diskrete stokastiske variable. Den stokastiske variable X kunne antage 2 værdier (0 og 1), men Y kunne antage 11 forskellige værdier (2,3,4,...,11,12).

Hvis vi laver en stokastisk variabel Z, der angiver højden på folk i din klasse, kunne den f.eks. antage værdierne

\[Z(\text{Pia}) = 162.3, \quad Z(\text{Rasmus}) = 187.49, \quad Z(\text{Peter}) = 179.88 \]

Den ville derfor ikke være begrænset til et endeligt antal værdier, men kunne antage alle mulige positive værdier, hvor lang de fleste ville falde i intervallet [155;195]. Derfor er Z en kontinueret stokastisk variabel.

7.7 Binomialfordelingen

Man bruger binomialfordelingen, når man har et forsøg, der kun har to udfald: succes og fiasko.

Man gentager forsøget et antal gange. Dette antal kaldes antalsparameteren og betegnes med n.

Vi laver en stokastisk variabel X, der angiver hvor mange succeser, vi har haft.

Vi kunne for eksempel have et spil 5-ternings-Yatzy, hvor vi manglede 3’erne. Vi er interesserede i, hvor mange 3’ere vi får.

I stedet for at se det som at kaste 5 terninger, kan vi se det som at kaste 1 terning 5 gange. Derfor er antalsparameteren $n=5$.

Vores succes er, at terningen viser 3. Det er altså fiasko, hvis den viser 1, 2, 4, 5 eller 6.

Der er 1 ud af 6, der giver succes, derfor er $p=1/6$.

Vores stokastiske variable X kan antage værdierne 0, 1, 2, 3, 4, 5, alt efter hvor mange 3’ere vi får.

Vi vil se, hvad sandsynligheden er for at få én 3’er. Dvs finde $P(X=1)$. Det svarer til, at vi i 1 af de 5 terningkast får en 3’er, mens vi får noget andet i de 4 andre.
Pga. multiplikationsprincippet skal vi altså gange

\[
\frac{1}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} = \frac{1}{6} \cdot \left(\frac{5}{6}\right)^4
\]

Imidlertid ved vi jo ikke i hvilket af de 5 terningkast, at 3’eren kommer. Det kan være i et hvilket som helst af dem. Derfor er der fem muligheder. I alt er sandsynligheden for at få én 3’er:

\[
P(X = 1) = 5 \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^4 \approx 0,402
\]

7.7.1 Binomialfordelingen

Det vi har set her er faktisk et specialtilfælde af binomialfordelingen. Den siger nemlig, at

\[
P(X = r) = K_{n,r} \cdot p^r \cdot (1 - p)^{n-r}
\]

Vi kan eksempelvis regne ud, hvad sandsynligheden er for at få 1 treer i fem terningkast.

\[
P(X = 1) = K_{5,1} \cdot \left(\frac{1}{6}\right)^1 \cdot \left(\frac{5}{6}\right)^4 \approx 0,402
\]

8 Statistik

8.1 Grundlæggende begreber

Indenfor statistik er der en masse begreber, som det er værd at have styr på.

8.1.1 Stikprøve og population

8.1.2 Observation, hyppighed, frekvens og kumuleret frekvens

Observationer i statistik er de ting, vi måler i vores undersøgelse. Hvis vi f.eks. ønsker at undersøge hvor store fødder 15-19-årige danskere har, kunne vi spørge din gymnasieklasse, hvilken skostørrelse, de bruger. Observationerne kunne her være skostørrelserne: 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47.

Det totale antal i stikprøven betegner man med n.

Hyppigheden for hver observation er det antal gange observationen forekommer. Hyppigheden for den i’te observation, betegner man tit h_i.

Frekvensen er den procentdel, hvormed en observation forekommer.

$$\text{frekvens} = \frac{\text{hyppighed}}{\text{totalt antal observationer}}$$

Man betegner tit frekvensen for den i’te observation med f_i

$$f_i = \frac{h_i}{n}$$

Den kumulerede frekvens (kumulere betyder opsamle) for en observation, får man ved at lægge frekvensen for den givne observation sammen med alle de frekvenser, hvor observationen er lavere. Den højeste observation har en kumuleret frekvens på 100% (nogle gange kan afrundinger dog gøre, at den bliver 99,9 eller 100,1)

$$(\text{kum. } f)_i = f_1 + f_2 + ... + f_{i-1} + f_i = \sum_{k=1}^{i} f_k$$

(Du kan læse om summationstegn her).

8.2 Summationstegn

Indenfor statistik skal man til lægge mange tal sammen. Man har derfor opfundet en smart notation, så man på en kort måde kan skrive, at man lægger mange tal sammen. Denne notation gør brug af summationstegnet, Σ (det græske bogstav store sigma).

Hvis vi nu skulle lægge tallene fra 1 til 10 sammen, ville vi skrive det på denne måde

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10$$

dette kan skrives meget kortere ved hjælp af sumtægn:

$$\sum_{k=1}^{10} k$$

Tallene over og under sumtægnet er summens grænser. Det nederste er det laveste heltal man skal sætte ind på k’s plads, og det øverste er det højeste heltal, man skal sætte ind på k’s plads.

Sumtægnet skal læses sådan, at man først sætter det laveste tal ind på k’s plads i udtrykket efter sumtægnet. Derefter skal man sætte tallet 1 højere ind på k’s plads, og lægge de to tal sammen. Så skal man sætte tallet endnu 1 højere ind på k’s plads og lægge dette til, osv. osv. indtil vi sætter den øverste grænse ind på k’s plads.
Lad os se på to eksempler, hvor vi til venstre skriver summationstegnsnotationen og til højre skriver summen ud led for led.

$$\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$$

$$\sum_{k=2}^{8} \sqrt{k} = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{5} + \sqrt{6} + \sqrt{7} + \sqrt{8}$$

Hvis man har i observationer: $x_1, x_2, x_3, \ldots, x_{i-2}, x_{i-1}, x_i$, kan man skrive deres sum således:

$$\sum_{k=1}^{i} x_k = x_1 + x_2 + x_3 + \ldots + x_i$$

8.3 Ugrupperede vs. Grupperede

Der findes overordnet set to slags observationer: ugrupperede og grupperede. I dette afsnit ser vi på, hvad forskellene er på dem. I de senere afsnit vil vi dele op og se på dem hver for sig, når det er nødvendigt.

Når vi har et datasæt, er data som udgangspunkt ikke grupperet. Det er op til os at vurdere, om det giver mening at gruppere datasættet i netop dette tilfælde. Når man grupperer et datasæt, inddeler vi observationerne i intervaller.

8.3.1 Stolpediagrammer og histogrammer

Når man skal lave en oversigt over, hvordan observationerne fordeler sig, gør man det forskelligt alt efter om der er tale om grupperede eller ugrupperede observationer.

Ved ugrupperede observationer, vil man typisk tegne et *stolpediagram*. Man har observationerne henad x-aksen, og for hver observation sætter man en lodret stolpe, der enten markerer hyppigheden eller frekvensen for denne observation.

For grupperede observationer kan man ikke lave stolpediagrammer. I stedet laver man såkaldte *histogrammer.*
Et histogram har intervalgrænserne på x-aksen. På y-aksen er der imidlertid ikke angivet nogen akseværdier. Den måde man aflæser et histogram på er nemlig ved at se på *arealet af hver søjle*. Øverst i højre hjørne er angivet hvor stort et areal 5% svarer til. Hvis man lægger arealerne af søjlerne sammen, får man 100%
Hvis intervallerne er lige bredde, svarer søjlernes højde til intervalhyppigheden. Men det er ikke altid, at alle intervallerne er lige bredde. Nedenfor er tegnet to histogrammer, der repræsenterer de samme observationer. I det første histogram har alle intervallerne længde 5, mens det i det andet varierer mellem intervallængder af 5 og 10.

Når man slår to søjler sammen, skal man altså sørge for, at den nye søjle har samme areal som de to tidligere havde tilsammen.

8.4 Middelværdi, Varians og Spredning

Når man finder middelværdien af et datasæt, svarer det til at finde gennemsnittet af tallene. Man skriver det oftest som et x med en streg over x:

$$\bar{x} = \text{middelværdi}$$

Hvis vi havde spurgt 10 gymnasieelever om deres lommepenge og fået svarene at 5 fik 50kr/uge, 3 fik 100kr/uge og 2 fik 200kr/uge, så ville det gennemsnitlige antal lommepenge pr uge være

$$\bar{x} = \frac{5 \cdot 50 + 3 \cdot 100 + 2 \cdot 200}{10} = 95$$

Det vi gjorde, da vi regnede middelværdien ud, var at gange observationen (antal lommepenge) med hyppigheden (antal elever, der fik det givne antal lommepenge). Så lagde vi alle disse produkter sammen og dividerede til sidst med det totale antal observationer (10).

Dette leder os frem til følgende formel

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{k} h_i \cdot x_i = \frac{h_1 \cdot x_1 + h_2 \cdot x_2 + \ldots + h_k \cdot x_k}{n}$$

I eksemplet ovenfor er $n=10$, $k=3$, $x_1=50$, $h_1=5$ osv.
(Du kan læse mere om summationstegnet [her](#))

Man kan også udregne middelværdien ved at gange frekvensen med observationen og summe det sammen
\[\overline{x} = \sum_{i=1}^{k} f_i \cdot x_i = f_1 \cdot x_1 + f_2 \cdot x_2 + \ldots + f_k \cdot x_k \]

I ovenstående eksempel fik 50% af eleverne 50kr/uge, 30% fik 100kr/uge og 20% fik 200kr/uge. Altså kunne man have udregnet gennemsnittet som

\[\overline{x} = 0,50 \cdot 50 + 0,30 \cdot 100 + 0,20 \cdot 200 = 95 \]

Formlerne ovenfor kan vi bruge, når vi har med *ugrupperede* observationer at gøre. Men hvad gør vi så, når observationerne er *grupperede*?

8.4.1 Middelværdi for grupperede observationer

Når ens observationer er grupperede, kan man ikke bare tage og gange observationsværdien med hyppigheden. For observationerne er jo hele interval og ikke bare en enkelt værdi. Det, man gør, er, at man udplukker midtpunktet af sit interval og bruger som observationsværdi. Hvis ens interval har endepunkterne a og b, finder man altså midtpunktet på følgende måde:

\[m = \text{startværdi} + \text{halvdelen af intervallets længde} = a + \frac{b - a}{2} = \frac{a + b}{2} \]

eller

\[m = \text{slutværdi} - \text{halvdelen af intervallets længde} = b - \frac{b - a}{2} = \frac{a + b}{2} \]

Vi har altså formlen for intervalmidtpunktet:

\[m = \frac{a + b}{2} \]

Når man har fundet sit intervalmidtpunkt, sætter man det ind på \(x_i \)'ernes plads i formlen for middelværdien af de ugrupperede observationer. Altså får vi

\[\overline{x} = \frac{1}{n} \sum_{i=1}^{k} h_i \cdot m_i = \frac{h_1 \cdot m_1 + h_2 \cdot m_2 + \ldots + h_k \cdot m_k}{n} \]

eller hvis man hellere vil bruge frekvenserne:

\[\overline{x} = \sum_{i=1}^{k} f_i \cdot m_i = f_1 \cdot m_1 + f_2 \cdot m_2 + \ldots + f_k \cdot m_k \]
8.4.2 Varians og spredning

Varians og spredning siger noget om, hvor stor spredning, der er i datasættet. Ligger observatio-
erne kort eller langt fra middelværdien?

Man beregner **variansen** på følgende måde

\[
\text{Var}(x) = \frac{1}{n} \sum_{i=1}^{k} h_i(x_i - \bar{x})^2 =
\]

\[
= \frac{h_1(x_1 - \bar{x})^2 + h_2(x_2 - \bar{x})^2 + \ldots + h_k(x_k - \bar{x})^2}{n}
\]

\[
\text{Var}(x) = \sum_{i=1}^{k} f_i(x_i - \bar{x})^2 =
\]

\[
= f_1(x_1 - \bar{x})^2 + f_2(x_2 - \bar{x})^2 + \ldots + f_k(x_k - \bar{x})^2
\]

Man finder altså afstanden mellem hver observation og middelværdien. Denne kvadrerer man, og så finder man gennemsnittet af dette.

Spredningen (eller *standardafvigelsen*) betegnes ofte med \(\sigma \) (det græske bogstav lille sigma). Den beregnes på følgende måde

\[
\sigma(x) = \sqrt{\text{Var}(x)}
\]

Man bruger tit spredning og varians til at sammenligne forskellige datasæt. Herunder er tegnet søjlediagrammer for to datasæt. Hver består af 22 observationer og de har samme middelværdi. Imidlertid er varians og spredning forskellig for de to datasæt.

8.5 Sumkurver, kvartilsæt og boksplots

Hvis man har lavet en statistisk undersøgelse over folks højde, kunne man være interesseret i at finde ud af, hvor mange procent, der er under 175 cm, hvor mange procent der er mellem 172 og
182 cm høje, hvor høje de 25% mindste er osv. osv.
Spørgsmål af denne type kan let besvares ved hjælp af en sumkurve.
I en sumkurve har man sine observationer hen ad x-aksen og de kumulerede frekvenser op ad y-aksen.

8.5.1 Ugrupperede vs. grupperede

Hvis ens data er *ugrupperet*, tegner man sin sumkurve ved fra sin observation at gå lodret op til den kumulerede frekvens. Derefter går man vandret hen til næste observation, hvorefter man går lodret op til dennes kumulerede frekvens. Man vil altså få en trappelignende figur.
Hvis ens data derimod er *grupperet*, tegner man sin sumkurve ved fra højre endepunkt af intervallet at afsætte den kumulerede frekvens. Når man har gjort det for alle intervallerne, forbinder man alle punkterne med rette linjer.

Eksempel på en sumkurve:

8.5.2 Kvartilsæt

Kvatilsættet består af tre tal: øvre kvartil, median og nedre kvartil.
Medianen (Med) er det midterste tal af alle observationerne. 50% af observationerne er altså mindre end medianen og 50% er større.
Nedre kvartil (Q₁) er det tal, som 25% af observationerne er mindre end (og 75% større end).
Øvre kvartil (Q₃) er det tal, som 75% af observationerne er mindre end (og 25% større end).
Man aflæser sit kvartilsæt i sumkurven.
For at finde nedre kvartil, finder man 25% på y-aksen. Herfra går man vandret, til man støder på sumkurven. Nu går man lodret ned. Det tal, man støder på på x-aksen, er nedre kvartil.
På samme måde finder man medianen ved bare at gå ud fra 50%, og øvre kvartil ved at gå ud fra 75%.
For sumkurven ovenfor svarer det til

\[Q_1 = 169.2 \]

\[\text{Med} = 173.75 \]

\[Q_3 = 180 \]

Det vil altså sige, at:

- 25% af eleverne er 169,2 cm eller lavere.
- 50% af eleverne er 173,75 cm eller lavere
- 75% af eleverne er 180 cm eller lavere.

Hvis man vil finde ud af, hvor mange procent af eleverne, der er 172 cm eller lavere, så går man den anden vej end før. Man finder 172 på x-aksen, går lodret op til man rammer sumkurven og går derfra vandret ind til y-aksen.

Vi kan altså aflæse, at 39% af eleverne er 172 cm eller lavere.

Hvor mange procent er mellem 172 cm og 182 cm høje?

I dette tilfælde aflæser man først, hvor mange procent, der er 182 cm eller lavere. Derfra trækker man, hvor mange procent, der er 172 cm eller lavere.

Vi kan aflæse, at 79% er 182 cm eller lavere.

Vi kan også aflæse, at 39% er 172 cm eller lavere.

Andelen, der er mellem 172 og 182 cm må derfor være 40% (=79%-39%)
8.5.3 Boksplot

Et boksplot er en overskuelig måde at fremstille sit data på.
For at kunne tegne et boksplot, skal man kende følgende værdier:

- mindste observation
- nedre kvartil
- median
- øvre kvartil
- største observation

Man har sine observationer hen ad x-aksen, og tegner sit boksplot på følgende måde:

Bemærk, at det er ligegyldigt, hvor højt oppe, vi tegner vores boksplot. y-aksen har ingen betydning.
I et boksplot gælder altid, at:

- 25% af observationerne ligger mellem Min og Q_1
- 25% af observationerne ligger mellem Q_1 Med
- 25% af observationerne ligger mellem Med og Q_3
8.6 Fordelingsfunktion og frekvensfunktion

Efter at have udført en statistisk undersøgelse, vælger man ofte at gruppere sit data. Man kan plotte sine data i et histogram med lige bredde søjler. I dette tilfælde svarer søjlens højde til frekvensen. Imidlertid bestemmer man selv, hvor bredde ens intervaller skal være. Hvis man gør sine intervaller smalle og smalle, vil histogrammet til sidst blive tilpasset en glat kurve.

Den glatte kurve, de tilpasses kaldes *frekvensfunktionen* eller *tæthedsfunktionen*. Dette skyldes, at den for hver observation (x-værdi) siger hvor høj en frekvens (y-værdi), denne observation har.

8.6.1 Fordelingsfunktion

På samme måde hvis vi indtegner de kumulerede frekvenser for data i en sumkurve. Jo smalle vi gør intervallerne, des mere glat bliver sumkurven. Den glatte kurve er graf for *fordelingsfunktionen*.

8.6.2 Sammenhæng mellem frekvensfunktion og fordelingsfunktion

I afsnittet om sumkurver så vi, at vi ud for hver x-værdi kunne aflæse hvor mange procent i undersøgelsen, der var mindre end eller lig med denne værdi.
På samme måde svarer fordelingsfunktionens værdi i et bestemt punkt til, hvor mange procent af målingerne, der er mindre end eller lig med denne observation.

Men dette svarer jo til den kumulerede frekvens for denne observation. Det svarer altså til at lægge frekvenserne sammen for alle de observationer, der er mindre end eller lig med vores faste punkt. Dette er jo summen af arealet af søjlerne i histogrammet, svarende til arealet under frekvensfunktionen til venstre for det faste punkt.

![Diagram](image)

Med brug af integralregning får man altså denne sammenhæng mellem fordelings- og frekvensfunktion.

\[
\text{Fordelingsfunktion}(x_0) = \int_{-\infty}^{x_0} \text{frekvensfunktion}(x) \, dx
\]

8.7 Normalfordeling

Når man laver statistiske eksperimenter, er det ofte man observerer, at data fordeler sig som en ”klokkeform”. Der er flest observationer inde mod midten, og så fordeler de sig ellers symmetrisk ud til begge sider.

Et eksempel kunne være disse data:

![Histogram](image)

Her er tegnet et histogram over noget data (søjlerne) og derudover er indtegnet en normalfordelingskurve (klokkeformet kurve). Man kan se, at data fordeler sig næsten ligesom kurven. Hvis man lavede intervallerne mindre (herover har de længde 1), ville søjlerne passe endnu bedre til
8.7.1 Tjek om data er normalfordelt

Hvis man skal tjekke om noget data er normalfordelt, så er det smart først at tegne et histogram over det og se, om det danner noget, der minder om en klokkeform.

Hvis det er tilfældet, kan man indtegne det i et normalfordelingspapir. Her skal det danne en ret linje.

Man kan tegne bedste rette linje af punkterne i normalfordelingspapiret og direkte aflæse middelværdi og spredning

8.7.2 Hvad er der særligt ved normalfordelenge?

Hvis data er normalfordelt gælder der, at medianen (den midterste observation) er lig med middelværdien (gennemsnit). Har man sumkurven for en normalfordeling, kan man altså aflæse middelværdien uden at lave nogen udregninger.

I en normalfordeling ligger data, så:

- 34,1 % ligger i intervallet \([\text{middelværdi} ; \text{middelværdi} + \text{spredning}]\)
- 13,6 % ligger i intervallet \([\text{middelværdi} + \text{spredning} ; \text{middelværdi} + 2\text{spredning}]\)
- 2,3 % ligger i intervallet \([\text{middelværdi} + 2\text{spredning} ; \text{infty}]\)

På samme måde forder der sig på den anden side af middelværdien.

Der gælder desuden at normalfordelingsen frekvensfunktion, \(\varphi\), danner en klokkeformet graf og dens fordelingsfunktion, \(\phi\), et symmetrisk S.

Frekvensfunktionen er givet ved forskriften

\[
\varphi(x) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]
hvor μ er middelværdien og σ er spredningen.
Man kan finde værdier af fordelingsfunktionen ved at integrere frekvensfunktionen.
Hvis vi har en normalfordeling med middelværdi 10 og spredning 1, er frekvensfunktionen

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-10)^2}{2}}$$

Hvis vi ønsker at se, hvor stor en del af vores observationer, der er 8,5 eller derunder, tager vi fordelingsfunktionens værdi i 8,5.

$$\phi(8,5) = \int_{-\infty}^{8,5} \varphi(x) \, dx = \int_{-\infty}^{8,5} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-10)^2}{2}} \, dx \approx 0,068 = 6,68\%$$

8.8 CHI-test

Nogle gange laver man et forsøg, hvor man på forhånd har en idé om, hvordan udfaldene bør være. Man kan derfor teste, om de observerede værdier stemmer overens med de forventede værdier. Til at gøre det, kan man bruge χ^2-test (χ er det græske tegn chi (og altså ikke et x)).
Vi vil her gennemgå, hvordan et χ^2-test fungerer vha. et eksempel.
Vi kaster 60 terninger og får resultaterne

<table>
<thead>
<tr>
<th>Antal øjne</th>
<th>Antal terninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

8.8.1 Forventede værdier

Når man laver et χ^2-test, er det første, man skal gøre, at beregne sine forventede værdier.
I vores tilfælde havde vi regnet med at terningerne ville fordele sig med 1/6 (dvs 10 terninger) ud for hvert antal øjne.
Vi tilføjer en række med forventede værdier

<table>
<thead>
<tr>
<th>Antal øjne</th>
<th>Antal terninger</th>
<th>Forventede værdier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1/6*60 = 10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Nu er det store spørgsmål: skyldes avvikelsen tilfældigheder, eller er der noget galt med vores terninger (eller den måde vi kastede dem på)?
8.8.2 Nulhypotese

Først opstiller man en nulhypotese, H_0.

Den vil typisk være, at forskellen mellem de forventede og observerede værdier skyldes tilfældigheder.

Hvis vi ender med at forkaste vores nulhypotese, kan vi altså sige, at der er en signifikant forskel mellem forventet og observeret.

Hvis vi ender med ikke at forkaste (dvs. acceptere) vores nulhypotese, kan vi sige, at der ikke er nogen signifikant forskel på forventede og observerede data.

Vores nulhypotese er:

H_0: Antallet af terninger, der viser et bestemt antal øjne er uafhængigt af, hvilket antal øjne, de viser. Eller med andre ord: der er lige stor sandsynlighed for at få hvert antal øjne.

8.8.3 Valg af signifikansniveau

Før man laver testet, skal man blive enig med sig selv om, hvad der skal til, før man forkaster hypotesen.

Udkommet at testet er en procentsats.

Den angiver, hvor stor sandsynligheden er for at få data, der passer lige så godt eller dårligere til nulhypotesen end de observerede data - under forudsætning af, at nulhypotesen er sand.

Typisk vil man vælge et signifikansniveau på 5%. Dvs. at hvis der (givet at nulhypotesen er sand) er mindre end 5% chance for at få de observerede data, så forkaster vi hypotesen.

Man kan også sige, at signifikansniveauet er risikoen for at forkaste en sand hypotese. Hvis vi gentog vores eksperiment mange gange, ville vi altså i 5% af tilfældene komme til at forkaste vores hypotese, selvom den var sand.

Det kan foranledige en til at vælge et lavere signifikansniveau. Men jo lavere man sætter sit signifikansniveau, des sværere bliver det at forkaste nulhypotesen, og derved øger man risikoen for at godtage en nulhypotese, selvom den faktisk er falsk.

Det er derfor en afvejning, hvor man sætter sit signifikansniveau, og det er normen at man bruger et signifikansniveau på 5%. Medicinske forsøg kræver dog tit et signifikansniveau på 1%.

Jo større forsøg man laver, des mindre bliver risikoen for både at afvise en sand hypotese og godkende en falsk hypotese. (Hvis vi f.eks. havde kastet 600 terninger i stedet for 60)

8.8.4 Frihedsgrader

Til et χ^2-test er knyttet et antal frihedsgrader.

Hvis der er k observationer, er der $k-1$ frihedsgrader.

I vores tilfælde er der 6 observationer, og derved er der 5 frihedsgrader.

Det betyder egentlig, at hvis vi tilfældigt skal fordele 60 terninger i de 6 bokse, så kan vi selv vælge hvor mange terninger vi kommer i hver af de fem første bokse, men i den sidste har vi ingen valgfrihed, den skal nemlig indeholde forskellen mellem 60 (det totale antal) og det vi har brugt på de 5 første.

8.8.5 Udregne chi-teststørrelsen

Nu er vi kommet til dør, hvor testet rigtigt starter. Nemlig beregningen af vores teststørrelse. Den beregnes ud fra følgende formel:
\[\chi^2 = \sum_{i=1}^{k} \frac{(O_i - F_i)^2}{F_i} = \frac{(O_1 - F_1)^2}{F_1} + \frac{(O_2 - F_2)^2}{F_2} + ... + \frac{(O_k - F_k)^2}{F_k} \]

hvor O står for observeret værdi, og F for forventet værdi.
Det er klart, at jo lavere \(\chi^2 \)-teststørrelsen er, des tættere ligger de observerede værdier på de forventede.

Vi udregner \(\chi^2 \)-teststørrelsen for vores terningforsøg.

\[\chi^2 = \frac{(5 - 10)^2}{10} + \frac{(12 - 10)^2}{10} + \frac{(11 - 10)^2}{10} + \frac{(16 - 10)^2}{10} + \frac{(7 - 10)^2}{10} + \frac{(9 - 10)^2}{10} = 7,6 \]

Vores teststørrelse er altså 7,6.

8.8.6 Konklusion på test

Når vi har fundet vores \(\chi^2 \)-teststørrelse skal vi have omsat den til en konklusion på testet.
Der er to måder at gøre det på.
Den første (der er mest gammeldags og mest intuitiv) er at benytte et \(\chi^2 \)-skema. Man aflæser sin kritiske værdi ud for antallet af frihedsgrader og signifikansniveau.

I vores terningforsøg var der 5 frihedsgrader og vi havde valgt et signifikansniveau på 5\% (0,05).

Vi kan dermed aflæse vores kritiske værdi til 11,07.

Hvis vores teststørrelse er større end den kritiske værdi, forkaster vi nullhypotesen, og hvis den er lavere, accepterer vi den.

Vores \(\chi^2 \)-teststørrelse var 7,6, der er lavere end 11,07, og derfor accepterer vi nullhypotesen.

Den anden måde at konkludere på i \(\chi^2 \)-testet er ved at finde p-værdien: sandsynligheden for at de observerede data optræder givet at nullhypotesen er sand.

Den kan bl.a. findes i Excel ved at skrive =CHIFORDELING(teststørrelse; frihedsgrader)

I vores tilfælde ville det give

\[" = \text{CHIFORDELING}(7,6; 5) = 0,18 = 18\% \]

Det vil sige, at hvis nullhypotesen er sand, er der 18\% chance for at vores data (eller noget der er
værre) optræder. Da de 18 % er højere end vores signifikansniveau på 5%, accepterer vi hypotesen.

Opsamling

- Find forventede værdier
- Opstil H_0: Vælg signifikansniveau og find antal frihedsgrader
- Udregn teststørrelse

Og herefter:
- Aflæs kritisk værdi i χ^2-skema. Hvis teststørrelsen er større end den kritiske værdi, afviser vi H_0.
- Eller find p-værdi. Hvis p-værdien er mindre end signifikansniveauet, afviser vi H_0.