Partielle afledede

Partielle afledede er en udvidelse af almindelig differentation, der bliver brugt når man har at gøre med funktioner af flere variable. Det handler kort og godt om, at man på sædvanligvis differentierer for en variabel, mens den anden variabel sættes som en konstant.

Alle regneregler for differentiation i en variabel \(+, - , *, /\), sammensatfunktion og inversfunktion kan også benyttes ved partielle afledede.

Denne fremgangsmåde kan ikke bare anvendes til funktioner af to variable, men også til funktioner af flere variable.

Der er forskellig notation for de partielle afledede. Det kan f.eks. være
\begin{align*}
\frac{\partial}{\partial x} f(x,y) & = f_x(x,y) \quad \text{og} \\
\frac{\partial}{\partial y} f(x,y) & = f_y(x,y)
\end{align*}

I den første af de to funktioner differentierer vi f(x,y) i forhold til x. Altså anser vi blot y som en konstant i funktionen.

Eksempel

Hvis vi kigger på ligningen
\(
f(x,y)=x^3 + x^2y^3-2y^2
\)

Hvis man ser y som en konstant, så er den partielle afledede ift. x
\(
\frac{\partial}{\partial x} f(x,y)=3x^2+2xy^3
\)

Hvis man i stedet ser x som en konstant, så er den partielle aflede ift. y
\(
\frac{\partial}{\partial y} f(x,y)=3x^2y^2 -4y
\)

Har du et spørgsmål, du vil stille om Partielle afledede? Skriv det i Webmatematiks forum!
Har du en kommentar til indholdet på denne side? Send os en mail!